Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37958073

RESUMO

The assessment of lameness in horses can be aided by objective gait analysis tools. Despite their key role of evaluating a horse at trot on a circle, asymmetry thresholds have not been determined for differentiating between sound and lame gait during this exercise. These thresholds are essential to distinguish physiological asymmetry linked to the circle from pathological asymmetry linked to lameness. This study aims to determine the Asymmetry Indices (AIs) with the highest power to discriminate between a group of sound horses and a group of horses with consistent unilateral lameness across both circle directions, as categorized by visual lameness assessment conducted by specialist veterinarians. Then, thresholds were defined for the best performing AIs, based on the optimal sensitivity and specificity. AIs were calculated as the relative comparison between left and right minima, maxima, time between maxima and upward amplitudes of the vertical displacement of the head and the withers. Except the AI of maxima difference, the head AI showed the highest sensitivity (≥69%) and the highest specificity (≥81%) for inside forelimb lameness detection and the withers AI showed the highest sensitivity (≥72%) and the highest specificity (≥77%) for outside forelimb lameness detection on circles.

2.
Animals (Basel) ; 12(24)2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36552418

RESUMO

Defining whether a gait asymmetry should be considered as lameness is challenging. Gait analysis systems now provide relatively accurate objective data, but their interpretation remains complex. Thresholds for discriminating between horses that are visually assessed as being lame or sound, as well as thresholds for locating the lame limb with precise sensitivity and specificity are essential for accurate interpretation of asymmetry measures. The goal of this study was to establish the thresholds of asymmetry indices having the best sensitivity and specificity to represent the visual single-limb lameness assessment made by expert veterinarians as part of their routine practice. Horses included in this study were evaluated for locomotor disorders at a clinic and equipped with the EQUISYM® system using inertial measurement unit (IMU) sensors. Visual evaluation by expert clinicians allocated horses into five groups: 49 sound, 62 left forelimb lame, 67 right forelimb lame, 23 left hindlimb lame, and 23 right hindlimb lame horses. 1/10 grade lame horses were excluded. Sensors placed on the head (_H), the withers (_W), and the pelvis (_P) provided vertical displacement. Relative difference of minimal (AI-min) and maximal (AI-max) altitudes, and of upward (AI-up) and downward (AI-down) amplitudes between right and left stance phases were calculated. Receiver operating characteristic (ROC) curves discriminating the sound horses from each lame limb group revealed the threshold of asymmetry indice associated with the best sensitivity and specificity. AI-up_W had the best ability to discriminate forelimb lame horses from sound horses with thresholds (left: -7%; right: +10%) whose sensitivity was greater than 84% and specificity greater than 88%. AI-up_P and AI-max_P discriminated hindlimb lame horses from sound horses with thresholds (left: -7%; right: +18% and left: -10%; right: +6%) whose sensitivity was greater than 78%, and specificity greater than 82%. Identified thresholds will enable the interpretation of quantitative data from lameness quantification systems. This study is mainly limited by the number of included horses and deserves further investigation with additional data, and similar studies on circles are warranted.

3.
Front Vet Sci ; 7: 102, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158773

RESUMO

Objective: To describe the feasibility and dye diffusion of selective perineural injection of the 7 and 8th cervical nerve (C7 and C8) ramus ventralis under ultrasonographic guidance in horses. Study design: Prospective experimental pilot cadaver study. Animals: Four equine cadavers of similar body weight (420-480 kg) and neck conformation. Methods: Five C7 and five C8 rami were perineurally injected with a dye solution. Anatomic dissections including vertebral canal opening were conducted to confirm nerve dye staining and describe the extent of color diffusion. Results: The ramus ventralis of the spinal cervical nerves was visualized in all cadavers. All the injections were successful in staining a portion of the nerve trunk. Eight rami had a uniform transversal staining of the nerve trunk that longitudinally covered a distance >2 cm. One C7 and one C8 nerve trunk showed incomplete transversal staining with a more concentrated color on its half cranial aspect and a longitudinal coverage of <2 cm. Five injections resulted in dye extending proximally and medially into the epidural space. Volume had no appreciable effect on the extent of nerve staining. A greater proportion of epidural diffusion was found with injections done within less than one cm distally to the articular processes. All injections were considered to be selective for the targeted nerve. Conclusion and clinical relevance: Ultrasonography-guided perineural injection of C7 and C8 ramus ventralis is a feasible technique that may have multiple applications in multimodal analgesia in horses. Further clinical study will be necessary to determine the appropriate drug, dosage, and volume to inject and to confirm its usefulness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...